Tuesday, February 15, 2011

Rubidium

Rubidium is a chemical element with the symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metallic element of the alkali metal group. The atomic weight is 85.4678. Elemental rubidium is very soft and highly reactive, with properties similar to other elements in group 1, such as very rapid oxidation in air. Rubidium has one stable isotope,85Rb. The isotope 87Rb which composes almost 28% of naturally occurring rubidium is slightly radioactive, with a half-life of 49 billion years—more than three times longer than the estimated age of the universe.

Two German chemists, Robert Bunsen and Gustav Kirchhoff, discovered rubidium in 1861 by the newly developed method of flame spectroscopy. Its compounds have chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms.

Rubidium is not known to be necessary for any living organisms. However, like caesium, rubidium ions are handled by living organisms in a manner similar to potassium ions: it is actively taken up by plants and by living animal cells.

Rubidium is the second most electropositive of the non-radioactive alkali elements and melts at a temperature of 39.3 °C (102.7 °F). Like other group 1 elements, this metal reacts violently with water. As with potassium (which is slightly less reactive) and caesium (which is slightly more reactive), this reaction is usually vigorous enough to ignite the hydrogen gas it liberates. Rubidium has also been reported to ignite spontaneously in air. Like other alkali metals, it forms amalgams with mercury and it can form alloys with gold, caesium, sodium, and potassium. The element and its ions give a reddish-violet color to a flame. It was named after two strong emission lines in the dark red area of the spectrum.

As a symmetrical effect of rubidium metal's high reactivity toward oxidation and tendency to subsequent formation of the rubidium cation Rb+, this cation, once formed, is very stable, and is normally unreactive toward further oxidative or reductive chemical reactions.

Saturday, February 12, 2011

Krypton

Krypton is a chemical element with the symbol Kr and atomic number 36. It is a member of Group 18 and Period 4 elements. A colorless, odorless, tasteless noble gas, krypton occurs in trace amounts in the atmosphere, is isolated by fractionally distilling liquified air, and is often used with other rare gases in fluorescent lamps. Krypton is inert for most practical purposes. Krypton can also form clathrates with water when atoms of it are trapped in a lattice of the water molecules.

Krypton, like the other noble gases, can be used in lighting and photography. Krypton light has a large number of spectral lines, and krypton's high light output in plasmas allows it to play an important role in many high-powered gas lasers, which pick out one of the many spectral lines to amplify. There is also a specific krypton fluoride laser. The high power and relative ease of operation of krypton discharge tubes caused (from 1960 to 1983) the official meter to be defined in terms of the orange spectral line of krypton-86.

Krypton was discovered in Britain in 1898 by Sir William Ramsay, a Scottish chemist, and Morris Travers, an English chemist, in residue left from evaporating nearly all components of liquid air. Neon was discovered by a similar procedure by the same workers just a few weeks later. William Ramsay was awarded the 1904 Nobel Prize in Chemistry for discovery of a series of noble gases, including krypton.

In 1960, an international agreement defined the meter in terms of wavelength of light emitted by the krypton-86 isotope (wavelength of 605.78 nanometers). This agreement replaced the longstanding standard meter located in Paris, which was a metal bar made of a platinum-iridium alloy (the bar was originally estimated to be one ten-millionth of a quadrant of the earth's polar circumference), and was itself replaced by a definition based on the speed of light — a fundamental physical constant. In October 1983, the Bureau International des Poids et Mesures (International Bureau of Weights and Measures) defined the meter as the distance that light travels in a vacuum during 1/299,792,458 s.

Bromine

Bromine is a chemical element with the symbol Br, an atomic number of 35, and an atomic mass of 79.904. It is in the halogen element group. The element was isolated independently by two chemists in 1825-26. Elemental bromine is a fuming red-brown liquid at room temperature, corrosive and toxic, with properties between those of chlorine and iodine. Free bromine does not occur in nature, but occurs as colorless soluble crystalline mineral halide salts, analogous to table salt.

Bromine is rarer than about three-quarters of elements in the Earth's crust, however the high solubility of bromide ion has caused its accumulation in the oceans, and commercially the element is easily extracted from brine pools, mostly in the United States, Israel, and China. About 556,000 metric tons were produced in 2007, an amount similar to the far more abundant element magnesium.

At high temperatures, organobromine compounds are easily converted to free bromine atoms, a process which acts to terminate free radical chemical chain reactions. This makes such compounds useful fire retardants and this is bromine's primary industrial use, consuming more than half of world production of the element. The same property allows volatile organobromine compounds, under the action of sunlight, to form free bromine atoms in the atmosphere which are highly effective in ozone depletion. This unwanted side-effect has caused many common volatile brominated organics like methyl bromide, a pesticide that was formerly a large industrial bromine consumer, to be abandoned. Remaining uses of bromine compounds are in well-drilling fluids, as an intermediate in manufacture of organic chemicals, and in film photography.

Bromine has no essential function in mammals, though it is preferentially used over chloride by one antiparasitic enzyme in the human immune system. Organobromides are needed and produced enzymatically from bromide by some lower life forms in the sea, particularly algae. As a pharmaceutical, simple bromide ion, Br-, has inhibitory effects on the central nervous system, and bromide salts were once a major medical sedative, before being replaced by shorter-acting drugs. They retain niche uses as antiepileptics.

Bromine Liquid

Selenium

Selenium is a chemical element with the atomic number 34, represented by the chemical symbol Se, an atomic mass of 78.96. It is a nonmetal, chemically related to sulfur and tellurium, and rarely occurs in its elemental state in nature.

Isolated selenium occurs in several different forms, the most stable of which is a dense purplish-gray semi-metal (semiconductor) form that is structurally a trigonal polymer chain. It conducts electricity better in the light than in the dark, and is used in photocells (see section Allotropes below). Selenium also exists in many non-conductive forms: a black glass-like allotrope, as well as several red crystalline forms built of eight-membered ring molecules, like its lighter cousin sulfur.

Selenium is found in economic quantities in sulfide ores such as pyrite, partially replacing the sulfur in the ore matrix. Minerals that are selenide or selenate compounds are also known, but are rare. The chief commercial uses for selenium today are in glassmaking and in chemicals and pigments. Uses in electronics, once important, have been supplanted by silicon semiconductor devices.

Selenium salts are toxic in large amounts, but trace amounts of the element are necessary for cellular function in most, if not all, animals, forming the active center of the enzymes glutathione peroxidase and thioredoxin reductase (which indirectly reduce certain oxidized molecules in animals and some plants) and three known deiodinase enzymes (which convert one thyroid hormone to another). Selenium requirements in plants differ by species, with some plants, it seems, requiring none.

Friday, February 11, 2011

Arsenic

Arsenic  is the chemical element that has the symbol As, atomic number 33 and relative atomic mass 74.92. Arsenic occurs in many minerals, mainly combined with sulfur and metals, and also naturally in the native (elemental) state. It was first documented by Albertus Magnus in 1250.

Arsenic is a metalloid. It can exist in various allotropes, although only the grey form is industrially important. The main use of metallic arsenic is for strengthening alloys of copper and especially lead (for example, in automotive batteries). Arsenic is a common n-type dopant in semiconductor electronic devices, and the optoelectronic compound gallium arsenide is the most common semiconductor in use after doped silicon.

A few species of bacteria are able to use arsenic compounds as respiratory metabolites, and are arsenic-tolerant. However, arsenic is notoriously poisonous to multicellular life, due to the interaction of arsenic ions with protein thiols. Arsenic and its compounds, especially the trioxide, are used in the production of pesticides (treated wood products), herbicides and insecticides. These applications are declining, however, as many of these compounds are in the process of being banned. Meanwhile, arsenic poisoning as a result of the natural occurrence of arsenic compounds in drinking water remains a problem for many parts of the world including the United States.

Poisoning due to Arsenic



Germanium

Germanium is a chemical element with the symbol Ge and atomic number 32. It is a lustrous, hard, grayish-white metalloid in the carbon group, chemically similar to its group neighbors tin and silicon. Germanium has five naturally occurring isotopes ranging in atomic mass number from 70 to 76. It forms a large number of organometallic compounds, including tetraethylgermane and isobutylgermane.

Germanium was discovered comparatively late because very few minerals contain it in high concentration. Germanium ranks near fiftieth in relative abundance of the elements in the Earth's crust. In 1869, Dmitri Mendeleev predicted its existence and some of its properties based on its position on his periodic table and called the element eka-silicon. Nearly two decades later, in 1886, Clemens Winkler found it in the mineral argyrodite. Winkler found that experimental observations agreed with Mendeleev's predictions and named the element after his country, Germany.

Germanium is an important semiconductor material used in transistors and various other electronic devices. Its major end uses are fiber-optic systems and infrared optics, but it is also used for polymerization catalysts, and in electronics and solar cell applications. It is finding a new use in nanowires.

Germanium is mined primarily from sphalerite, though it is also recovered from silver, lead, and copper ores. Some germanium compounds, such as germanium chloride and germane, can irritate the eyes, skin, lungs, and throat.

Thursday, February 10, 2011

Gallium

Gallium is a chemical element that has the symbol Ga and atomic number 31. Elemental gallium does not occur in nature, but as the gallium(III) salt in trace amounts in bauxite and zinc ores. A soft silvery metallic poor metal, elemental gallium is a brittle solid at low temperatures. As it liquefies slightly above room temperature, it will melt in the hand. Its melting point is used as a temperature reference point, and from its discovery in 1875 to the semiconductor era, its primary uses were in high-temperature thermometric applications and in preparation of metal alloys with unusual properties of stability, or ease of melting; some being liquid at room temperature or below. The alloy Galinstan (68.5% Ga, 21.5% In, 10% Sn) has a melting point of about −19 °C (−2.2 °F).

In semiconductors, the major-use compound is gallium arsenide used in microwave circuitry and infrared applications. Gallium nitride and indium gallium nitride, minority semiconductor uses, produce blue and violet light-emitting diodes (LEDs) and diode lasers. Semiconductor use is now almost the entire (> 95%) world market for gallium, but new uses in alloys and fuel cells continue to be discovered.

Gallium is not known to be essential in biology, but because of the biological handling of gallium's primary ionic salt gallium(III) as though it were iron(III), the gallium ion localizes to and interacts with many processes in the body in which iron(III) is manipulated. As these processes include inflammation, which is a marker for many disease states, several gallium salts are used, or are in development, as both pharmaceuticals and radiopharmaceuticals in medicine.

About This Blog

Lorem Ipsum

  © Blogger templates Shiny by Ourblogtemplates.com 2008

Back to TOP