Helium is the chemical element with atomic number 2 and an atomic weight of 4.002602, which is represented by the symbol He. It is a colorless, odorless, tasteless, non-toxic, inert monatomic gas that heads the noble gas group in the periodic table. Its boiling and melting points are the lowest among the elements and it exists only as a gas except in extreme conditions. Next to hydrogen, it is the second most abundant element in the universe, and accounts for 24% of the elemental mass of our galaxy.
An unknown yellow spectral line signature in sunlight was first observed from a solar eclipse in 1868 by French astronomer Pierre Janssen. Janssen is jointly credited with the discovery of the element with Norman Lockyer, who observed the same eclipse and was the first to propose that the line was due to a new element which he named helium. In 1903, large reserves of helium were found in the natural gas fields in parts of the United States, which is by far the largest supplier of the gas.
Helium is used in cryogenics (its largest single use, accounting for about a quarter of production), and the cooling of superconducting magnets, particularly the main commercial application in MRI scanners. Helium's other industrial uses as a pressurizing and purge gas, and a protective atmosphere for arc welding and processes (such as growing crystals to make silicon wafers), account for half of its use. Economically minor uses, such as lifting gas in balloons and airships are popularly known. As with any gas with differing density from air, inhaling a small volume of helium temporarily changes the timbre and quality of the human voice. In scientific research, the behavior of two fluid phases of helium-4, helium I and helium II, is important to researchers studying quantum mechanics (in particular the phenomenon of superfluidity) and to those looking at the effects that temperatures near absolute zero have on matter (such as superconductivity).
Helium is the second lightest element and is the second most abundant in the observable universe, being present in the universe in masses more than 12 times those of all the heavier elements combined. Its abundance is also similar to this in our own Sun and Jupiter. This is due to the very high binding energy (per nucleon) of helium-4 with respect to the next three elements after helium (lithium, beryllium, and boron). This helium-4 binding energy also accounts for its commonality as a product in both nuclear fusion and radioactive decay. Most helium in the universe is helium-4, and is believed to have been formed during the Big Bang. Some new helium is being created currently as a result of the nuclear fusion of hydrogen in stars greater than 0.5 solar masses.
On Earth, the lightness of helium has caused its evaporation from the gas and dust cloud from which the planet condensed, and it is thus relatively rare—0.00052% by volume in the atmosphere. What helium is present today has been mostly created by the natural radioactive decay of heavy radioactive elements (thorium and uranium), as the alpha particles that are emitted by such decays consist of helium-4 nuclei. This radiogenic helium is trapped with natural gas in concentrations up to 7% by volume, from which it is extracted commercially by a low-temperature separation process called fractional distillation.